Inverting Amplifier



1. Pendahuluan [Back]
        Operational Amplifier, yang biasa disingkat sebagai Op-Amp, adalah komponen elektronik yang berperan sebagai penguat sinyal. Op-Amp memiliki dua input, inverting dan non-inverting, dan satu output. Prinsip kerja Op-Amp adalah membandingkan tegangan pada kedua inputnya dan menghasilkan output yang merupakan penguatan dari perbedaan tegangan tersebut.
 
        Inverting amplifier adalah rangkaian penguat operasional (Op-Amp) yang menghasilkan output dengan fase yang berlawanan dari inputnya. Ini berarti jika input positif, output akan negatif, dan sebaliknya. Rangkaian ini menggunakan umpan balik negatif untuk mengontrol gain dan stabilitas. Gain dari inverting amplifier ditentukan oleh rasio antara resistor umpan balik (Rf) dan resistor input (Rin). Rangkaian ini banyak digunakan dalam aplikasi pengolahan sinyal dan sistem kontrol karena kemampuannya untuk membalikkan fase sinyal dan mengatur gain dengan presisi tinggi
 
2. Tujuan[Back]
  • Dapat menggunakan aplikasi proteus untuk membuat rangkaian OP-AMP
  • Dapat menggunakan komponen-komponen sederhana dalam membuat rangkaian pada aplikasi proteus
  • Dapat memahami rangkaian OP-AMP pada aplikasi Proteus
  • Dapat mengetahui bentuk rangkaian Inverting Amplifier
3. Alat dan Bahan[Back]
 
  • Grounding


  • OP-AMP

 
  • Resistor
         




  • Baterai/Sumber Tegangan
             
  • POWER SUPPLY


B. Alat
  • Oscilloscope

  •             Spesifikasi:


  • Voltmeter
        Berfungsi untuk mengukur tegangan.


  • Amperemeter
         Berfungsi untuk mengukur arus.
    


3. Dasar Teori
A. Op-Amp (Operational Amplifier)   
  


        Penguat operasional (Operational Amplifier) atau yang biasa disebut dengan op-amp, merupakan penguat elektronika yang banyak digunakan untuk membuat rangkaian detektor, komparator, penguat audio, video, pembangkit sinyal, multivibrator, filter, ADC, DAC, rangkaian penggerak dan berbagai macam rangkaian analog lainnya. Op-amp pada umumnya tersedia dalam bentuk rangkaian terpadu yang memiliki karakteristik mendekati karakteristik penguat operasional ideal tanpa perlu memperhatikan apa yang terdapat di dalamnya. Ada tiga karakteristik utama op-amp ideal, yaitu;

1. Gain sangat besar (AOL >>). 
    Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak    terhingga. 
2. Impedansi input sangat besar (Zi >>).
     Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan. 
3. Impedansi output sangat kecil (Zo <<). 
    Impedansi output adalah sangat kecil sehingga tegangan output stabil karena tahanan beban lebih besar yang diparalelkan dengan Zo <<.

 Adapun simbol op-amp adalah seperti pada gambar 64
                                         
                                                                         Gambar 7
dimana,
V1 adalah tegangan masukan dari kaki non inverting 
V2 adalah tegangan masukan dari kaki inverting 
Vo adalah tegangan keluaran

sehingga
Adapun tegangan output maksimum yang dapat dihasilkan adalah :
dibawah tegangan sumber +-Vs = +-Vsat

   Tegangan output maksimum secara praktis dihasilkan sekitar 2 Volt dibawah tegangan sumber ±Vs dan disebut juga sebesar tegangan saturasi ±Vsat . Gambar 65 memperlihatkan kurva karakteristik hubungan Vi terhadap Vo untuk rangkaian op-amp dengan tegangan input dihubungkan ke kaki input non inverting (+) dan tegangan 0 Volt (di ground) ke kaki input inverting (-). Sesuai dengan nama input op-amp yaitu apabila input dimasukkan ke kaki non inverting (+) yang artinya tidak membalik maka tegangan output yang dihasilkan adalah sefasa dengan tegangan input. Seperti terlihat pada gambar 1 yaitu saat input Vi bertegangan positif maka output yang dihasilkan juga bertegangan positif dan sebaliknya
                                      Gambar 8 Rangkaian op-amp dengan kurva karakteristik I-O

  • Inverting Amplifier

    Rangkaian inverting amplifier adalah seperti gambar 113 dimana sesuai dengan namanya yaitu dengan input dimasukkan ke kaki inverting (pembalik) sehingga output akan dibalik atau beda fasa sebesar 180 derajat
    Untuk mencari turunan penguatan tegangan ACL maka rangkaian dimisalkan dahulu dengan input dc positif, seperti gambar 114. Dalam analisa rangkaian amplifier disyaratkan op-amp bekerja ideal sehingga tegangan differensial (selisih tegangan di kaki non inverting terhadap tegangan di kaki inverting) Ed = 0, artinya VA (tegangan di titik A) = 0 sehingga arus yang melewati Ri sama dengan arus yang melewati Rf karena arus yang masuk ke kaki inverting sangat kecil karena sifat op-amp dimana impendasi (Zi) inputnya sangat besar. Adapun rangkaian pengganti untuk menghitung arus I adalah seperti gambar 9
Gambar 9 Rangkaian inverting amplifier
Gambar 10 Rangkaian inverting amplifier dengan input dc positif



    Dari rangkaian gambar 10 dengan Ed = 0 maka VA = 0 sehingga rangkaian dapat disederhanakan menjadi seperti gambar 11 untuk mencari arus
Gambar 11 Rangkaian untuk menghitung arus I


Dengan I=V/R maka dapat dicari ACL untuk gambar 11
Bentuk gelombang tegangan output VO adalah seperti pada gambar 12 dan karakteristik I-O seperti pada gambar 13
Gambar 12 Bentuk gelombang tegangan output VO

Gambar 13 Kurva karakterik I-O

 
  • Komparator

Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output. 


 
B. LED


Pinout:



Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju.  Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. 

spesifikasi:



C. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.


Terdapat besi atau yang disebut dengan nama iron core dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga ketika kumparan coil diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik armature untuk pindah posisi dari normally close ke normally open. Dengan demikian saklar menjadi pada posisi baru normally open yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normally close.

Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Maksimum beban AC 10A @ 250/125V
4. Maksimum baban DC 10A @ 30/28V
5. Switching maksimum 300 operasi/menit


D. Thermocouple

234395.jpg

Thermocouple adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan suhu dalam benda menjadi perubahan tegangan listrik (voltase). Thermocouple yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauan suhu yang cukup besar dengan batas kesalahan pengukuran kurang dari 1 °C.

  1. Fungsi Thermocouple
    Thermocouple merupakan sensor yang mengubah besaran suhu menjadi tegangan, dimana sensor ini dibuat dari sambungan dua bahan metallic yang berlainan jenis. Sambungan ini dikomposisikan dengan campuran kimia tertentu, sehingga dihasilkan beda potensial antar sambungan yang akan berubah terhadap suhu yang dideteksi.

* Tipe-Tipe Termokopel
Tersedia beberapa jenis termokopel, tergantung aplikasi penggunaannya
• Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))
Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu −200 °C hingga +1200 °C.
• Tipe E (Chromel / Constantan (Cu-Ni alloy))
Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah. Properti lainnya tipe E adalah tipe non magnetik.
• Tipe J (Iron / Constantan)
Rentangnya terbatas (−40 hingga +750 °C) membuatnya kurang populer dibanding tipe K. Tipe J memiliki sensitivitas sekitar ~52 µV/°C
• Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))
Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900°C, sedikit di bawah tipe K. Tipe N merupakan perbaikan tipe K
Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).
• Type B (Platinum-Rhodium/Pt-Rh)
Cocok mengukur suhu di atas 1800 °C. Tipe B memberi output yang sama pada suhu 0°C hingga 42°C sehingga tidak dapat dipakai di bawah suhu 50°C.
• Type R (Platinum /Platinum with 7% Rhodium)
Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum.
• Type S (Platinum /Platinum with 10% Rhodium)
Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum. Karena stabilitasnya yang tinggi Tipe S digunakan untuk standar pengukuran titik leleh emas (1064.43 °C).
• Type T (Copper / Constantan)
Cocok untuk pengukuran antara −200 to 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari constantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C.

* Prinsip Kerja Termokopel
Thermocouple suatu rangkaian yang tersusun dari dua buah logam yang masing-masing mempunyai koefisien muai panjang berbeda yang dihubungkan satu dengan yang lain pada ujung-ujungnya. Jika pada kedua titik hubung kedua logam tersebut mempunyai perbedaan temperature, maka timbullah beda potensial yang memungkinkan adanya arus listrik di dalamnya.
Termokopel secara sederhana merupakan perpaduan antara dua logam yang berbeda jenis, yang persambungan (kopel) kedua logam diberikan pengkondisian suhu yang berbeda (panas dan dingin). Setting alat untuk melakukan kalibrasi termokopel yaitu, misal kita sebut saja logam A dan logam B merupakan bahan logam pada termokopel. Ujung logam A dan B disambung dan ujung-ujung yang lain dihubungkan ke alat ukur listrik dan dimasukkan ke dalam kondisi suhu dingin, dan untuk ujung yang dikopel ditempatkan pada kondisi suhu panas.. Jadi, nilai tegangan itu setara dengan suhu yang terukur oleh termometer, sehingga didapatkan nilai tegangan sekian = suhu sekian,


9.-Thermocouple-circuit.jpg
Untuk memahami bagaimana sebuah sambungan logam pada termokopel dapat menimbulkan tegangan listrik kita bisa meninjaunya dari sisi pergerakan atom-atom logam yang digunakan pada termokopel. Suatu logam apabila dipanaskan maka akan mengalami pemuaian, baik memuai panjang maupun memuai lebar (volum). Pemuaian ini diakibatkan oleh pergerakan atom-atom atau elektron dari suhu tinggi menuju ke suhu yang lebih rendah. Pergerakan ini banyak sedikitnya atau cepat lambatnya tergantung pada bahan logam itu sendiri, artinya logam satu dengan logam lainnya memiliki kecepatan muai yang berbeda-beda. Hal ini dapat kita amati pada bimetal (dua keping logam yang dipadu), ketika bimetal ini dipanaskan maka yang tadinya lurus akan membengkok kearah logam yang pemuaiannya lebih lambat. Jadi, pada logam termokopel yang berbeda jenis akan memiliki kecepatan alir elektron yang berbeda pula, hal inilah yang kemudian menyebabkan beda potensial di ujung-ujung logam tersebut, yang mana telah dihubungkan ke alat ukur listrik sehingga timbul tegangan listrik di ujung-ujung logam tersebut. Termocouple banyak digunakan sebagai alat ukur suhu di dunia industri, salah satu keuntungannya yaitu mampu mengukur suhu yang sangat tinggi dan juga suhu rendah.
Termokopel merupakan sebuah alat yang biasa digunakan untuk mengukur suhu yang pada umumnya sebagai termometer digital, karena termokopel memiliki output berupa arus listrik sehingga pengkonversiannya dapat secara digital. Pada banyak aplikasi, salah satu sambungan-sambungan yang dingin dijaga sebagai temperatur referensi, sedang yang lain dihubungkan pada objek pengukuran. Contoh, hubungan dingin akan ditempatkan pada tembaga pada papan sirkuit. Sensor suhu yang lain akan mengukur suhu pada titik ini, sehingga suhu pada ujung benda yang diperiksa dapat dihitung.
Thermocouple dapat dihubungkan secara seri satu sama lain untuk membuat termopile, dimana tiap sambungan yang panas diarahkan ke suhu yang lebih tinggi dan semua sambungan dingin ke suhu yang lebih rendah. Dengan begitu, tegangan pada setiap Thermocouple menjadi naik, yang memungkinkan untuk digunakan pada tegangan yang lebih tinggi. Dengan adanya suhu tetapan pada sambungan dingin, yang berguna untuk pengukuran di laboratorium, Secara sederhana Thermocouple tidak mudah dipakai untuk kebanyakan indikasi sambungan lansung dan instrumen kontrol. Mereka menambahkan sambungan dingin tiruan ke sirkuit mereka yaitu peralatan lain yang sensitif terhadap suhu (seperti termistor atau dioda) untuk mengukur suhu sambungan input pada peralatan, dengan tujuan khusus untuk mengurangi gradiasi suhu di antara ujung-ujungnya.
Thermocouple mengukur perbedaan temperature diantara kedua kaki, bukan temperatur absolute.

Ketika terkena panas maka bimetal akan bengkok kearah yang koefisiennya lebih kecil. Pemuaian ini kemudian dihubungkan dengan jarum dan menunjukkan angka tertentu. Angka yang ditunjukkan jarum ini menunjukkan suhu benda (pada Thermocouple digital). Termokopel ini macam-macam, tergantung jenis logam yang digunakan. Jenis logam akan menentukan rentang temperatur yang bisa diukur (termokopel suhu badan (temperatur rendah) berbeda dengan termokopel untuk mengukur temperatur tungku bakar (temperatur tinggi), juga sensitivitasnya.
Konfigurasi alat ukur dengan thermocouple ditunjukkan pada gambar
Terdapat sebuah kawat pemanas lurus yang dibuat dari bahan yang mempunyai nilai tahanan yang cukup tinggi. Pada tengah-tengah kawat pemanas tersebut dihubungkan dengan salah satu titik hubung dari thermocouple. Kedua ujung bebas thermocouple masing-masing dihubungkan dengan pengukur milivolt yang akan mengukur beda tegangan yang dihasilkan oleh kedua ujung thermocouple tersebut. Jika arus I dialirkan melalui kawat pemanas maka kawat pemanas akan membangkitkan panas dengan besar daya berbanding dengan arus kuadratnya.

E. Flame Sensor

Salah satu detektor yang memiliki fungsi terpenting adalah detektor api atau yang biasa disebut dengan Flame Detector yang mampu mengaktifkan alarm bila mendeteksi adanya percikan api yang berisiko menyebabkan bencana kebakaran. Namun, saat memilih Flame Detector, pengguna diharuskan telah benar-benar paham atas prinsip dari alat detektor tersebut dan meninjaunya demi mendapatkan Flame Detector yang sesuai dengan aktivitas di dalam lokasi dan tingkat kebutuhannya, serta bagaimana konsekuensi risiko yang mungkin terjadi.

Prinsip Flame Detektor tersebut menggunakan metode optik yang bekerja seperti UV (ultraviolet) dan IR (infrared), pencitraan visual api, serta spektroskopi yang berfungsi untuk mengidentifikasi percikan api atau flame. Reaksi intens bahan yang memicu kebakarfan dapat ditandai dari UV, terlihatnya emisi karbondioksida, dan radiasi dari infrared. Flame Detector juga mampu membedakan antara False Alarm atau peringatan palsu dengan api kebakaran sungguhan melalui komponen sistem yang dirancang dengan fungsi mendeteksi adanya penyerapan cahaya yang terjadi pada gelombang tertentu.

Tingkat potensi risiko kebakaran dari setiap jenis bahan semakin meluas mengingat semakin canggihnya teknologi penginderaan api atau teknologi Flame Sensing. Pada umumnya bahan bakar industri yang tergolong mudah terbakar antara lain: bensin, hidrogen, belerang, alkohol, LNG/LPG, minyak tanah, kertas, disel, kayu, jet bahan bakar, tekstil, ethylene, dan pelarut.


Gambar 12. Grafik Respon Flame Sensor

F. Ground
Berfungsi sebagai penahan arus. Pada ilmu listrik satu fasa, kita sering mendengar istilah kabel fasa, netral, dan ground. Untuk kabel fasa sudah jelas yaitu kabel yang mengandung tegangan. Ciri utama dari kabel fasa adalah bisa ditestpen akan menyala. Sedangkan untuk kabel neutral dan ground masih banyak orang bingung sehingga mengganggap sama antara netral dan ground. Untuk itu pada artikel ini akan dibahas apa perbedaan antara kabel netral dan ground.

Kabel netral adalah kabel bermuatan listrik rendah(mendekati nol) dan dipakai sebagai acuan. Seperti kita ketahui, agar terjadi aliran arus listrik maka harus ada beda potensial. Untuk itu, apabila kita hanya menggunakan kabel fasa masuk dalam komponen listrik, misalnya lampu, maka lampu tidak akan menyala. Apabila kita tambahkan kabel netral maka akan terjadi beda potensial antara kabel fasa dan netral yang melewati lampu tadi sehingga lampu menyala. Ciri dari kabel ini adalah apabila ditestpen maka testpen tidak menyala.

Kabel ground berfungsi sebagai proteksi apabila terjadi kebocoran arus. Kebocoran arus adalah apabila isolasi kabel atau perangkat elektronik rusak, maka arus listrik bisa mengalir di konduktor yang bersentuhan dengannya. Misal ada kabel kulkas yang mengelupas, akan berbahaya jika kabel yang terkelupas ini menempel di body kulkas yang terbuat dari besi/alumunium karena menyebabkan body kulkas memiliki arus listrik dan bisa menimbulkan sengatan listrik apabila terpegang. Sesuai namanya, kabel ground adalah kabel yang terhubung ke tanah/bumi yang akan membuang arus bocor tadi ke tanah. Karena berfungsi sebagai proteksi, arus listrik tetap bisa mengalir hanya dengan kabel fasa dan netral.


G. Resistor

Untuk mengetahui nilai resistansi dari suatu resistor, dapat dilihat dari tabel berikut:

headings

   4 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

 5 Gelang Warna



Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.


H. Oscilloscope

Osiloskop adalah alat ukur elektronik yang berfungsi untuk memproyeksikan frekuensi dan sinyal listrik dalam bentuk grafik.

Tombol/Sakelar dan Indikator Osiloskop
  1. Tombol Power ON/OFF
    Tombol Power ON/OFF berfungsi untuk menghidupkan dan mematikan Osiloskop
  2. Lampu Indikator
    Lampu Indikator berfungsi sebagai Indikasi Osiloskop dalam keadaan ON (lampu Hidup) atau OFF (Lampu Mati)
  3. ROTATION
    Rotation pada Osiloskop berfungsi untuk mengatur posisi tampilan garis pada layar agar tetap berada pada posisi horizontal. Untuk mengatur rotation ini, biasanya harus menggunakan obeng untuk memutarnya.
  4. INTENSITY
    Intensity digunakan untuk mengatur kecerahan tampilan bentuk gelombang agar mudah dilihat.
  5. FOCUS
    Focus digunakan untuk mengatur penampilan bentuk gelombang sehingga tidak kabur
  6. CAL 
    CAL digunakan untuk Kalibrasi tegangan peak to peak (VP-P) atau Tegangan puncak ke puncak.
  7. POSITION
    Posistion digunakan untuk mengatur posisi Vertikal (masing-masing Saluran/Channel memiliki pengatur POSITION).
  8. INV (INVERT)
    Saat tombol INV ditekan, sinyal Input yang bersangkutan akan dibalikan.
  9. Sakelar VOLT/DIV
    Sakelar yang digunakan untuk memilih besarnya tegangan per sentimeter (Volt/Div) pada layar Osiloskop. Umumnya, Osiloskop memiliki dua saluran (dual channel) dengan dua Sakelar VOLT/DIV. Biasanya tersedia pilihan 0,01V/Div hingga 20V/Div.
  10. VARIABLE
    Fungsi Variable pada Osiloskop adalah untuk mengatur kepekaan (sensitivitas) arah vertikal pada saluran atau Channel yang bersangkutan. Putaran Maksimum Variable adalah CAL yang berfungsi untuk melakukan kalibrasi Tegangan 1 Volt tepat pada 1cm di Layar Osiloskop.
  11. AC – DC
    Pilihan AC digunakan untuk mengukur sinyal AC, sinyal input yang mengandung DC akan ditahan/diblokir oleh sebuah Kapasitor. Sedangkan pada pilihan posisi DC maka Input Terminal akan terhubung langsung dengan Penguat yang ada di dalam Osiloskop dan seluruh sinyal input akan ditampilkan pada layar Osiloskop.
  12. GND
    Jika tombol GND diaktifkan, maka Terminal INPUT akan terbuka, Input yang bersumber dari penguatan Internal Osiloskop akan ditanahkan (Grounded).
  13. VERTICAL INPUT CH-1
    Sebagai VERTICAL INPUT untuk Saluran 1 (Channel 1)
  14. VERTICAL INPUT CH-2
    Sebagai VERTICAL INPUT untuk Saluran 2 (Channel 2)
  15. Sakelar MODE
    Sakelar MODE pada umumnya terdiri dari 4 pilihan yaitu CH1, CH2, DUAL dan ADD.
    CH1 = Untuk tampilan bentuk gelombang Saluran 1 (Channel 1).
    CH2 = Untuk tampilan bentuk gelombang Saluran 2 (Channel 2).
    DUAL = Untuk menampilkan bentuk gelombang Saluran 1 (CH1) dan Saluran 2 (CH2) secara bersamaan.
    ADD = Untuk menjumlahkan kedua masukan saluran/saluran secara aljabar. Hasil penjumlahannya akan menjadi satu gambar bentuk gelombang pada layar.
  16. x10 MAG
    Untuk pembesaran (Magnification) frekuensi hingga 10 kali lipat.
  17. POSITION
    Untuk penyetelan tampilan kiri-kanan pada layar.
  18. XY
    Pada fungsi XY ini digunakan, Input Saluran 1 akan menjadi Axis X dan Input Saluran 2 akan menjadi Axis Y.
  19. Sakelar TIME/DIV
    Sakelar TIME/DIV digunakan untuk memilih skala besaran waktu dari suatu periode atau per satu kotak cm pada layar Osiloskop.
  20. Tombol CAL (TIME/DIV)
    ini berfungsi untuk kalibrasi TIME/DIV
  21. VARIABLE
    Fungsi Variable pada bagian Horizontal adalah untuk mengatur kepekaan (sensitivitas) TIME/DIV.
  22. GND
    GND merupakan Konektor yang dihubungkan ke Ground (Tanah).
  23. Tombol CHOP dan ALT
    CHOP adalah menggunakan potongan dari saluran 1 dan saluran 2.
    ALT atau Alternate adalah menggunakan saluran 1 dan saluran 2 secara bergantian.
  24. HOLD OFF
    HOLD OFF untuk mendiamkan gambar pada layar osiloskop.
  25. LEVEL
    LEVEL atau TRIGGER LEVEL digunakan untuk mengatur gambar yang diperoleh menjadi diam atau tidak bergerak.
  26. Tombol NORM dan AUTO
  27. Tombol LOCK
  28. Sakelar COUPLING
    Menunjukan hubungan dengan sinyal searah (DC) atau bolak balik (AC).
  29. Sakelar SOURCE
    Penyesuai pemilihan sinyal.
  30. TRIGGER ALT
  31. SLOPE
  32. EXT
    Trigger yang dikendalikan dari rangkaian di luar Osiloskop.
I. Motor DC
Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. 
Konfigurasi Pin

 Pin 1 : Terminal 1

 Pin 2 : Terminal 2

                Spesifikasi Motor DC


J. Dioda

     Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Berikut ini adalah fungsi dari dioda antara lain:

·                     Untuk alat sensor panas, misalnya dalam amplifier.

·                     Sebagai sekering(saklar) atau pengaman.

·                     Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.

·                     Untuk menstabilkan tegangan pada voltage regulator

·                     Untuk penyearah

·                     Untuk indikator

·                     Untuk alat menggandakan tegangan.

·                     Untuk alat sensor cahaya, biasanya menggunakan dioda photo. 

Simbol dioda adalah :

 

Untuk menentukan arus zenner  berlaku persamaan:

 



                Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

K. LDR

Lampu Listrik adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik. Arus listrik yang dimaksud ini dapat berasal tenaga listrik yang dihasilkan oleh pembangkit listrik terpusat (Centrally Generated Electric Power) seperti PLN dan Genset ataupun tenaga listrik yang dihasilkan oleh Baterai dan Aki.

 

Jenis Jenis Lampu Listrik

 

Seiring dengan perkembangan Teknologi, Lampu Listrik juga telah mengalami berbagai perbaikan dan  kemajuan. Teknologi Lampu Listrik bukan saja Lampu Pijar yang ditemukan oleh Thomas Alva Edison saja namun sudah terdiri dari berbagai jenis dan Teknologi. Pada dasarnya, Lampu Listrik dapat dikategorikan dalam Tiga jenis yaitu Incandescent Lamp (Lampu Pijar), Gas-discharge Lamp (Lampu Lucutan Gas) dan Light Emitting Diode (Lampu LED).

 

Lampu Pijar (Incandescent Lamp)

 

Lampu Pijar atau disebut juga Incandescent Lamp adalah jenis lampu listrik yang menghasilkan cahaya dengan cara memanaskan Kawat Filamen di dalam bola kaca yang diisi dengan gas tertentu seperti  nitrogen, argon, kripton  atau hidrogen. Kita dapat menemukan Lampu Pijar dalam berbagai pilihan Tegangan listrik yaitu Tegangan listrik yang berkisar dari 1,5V hingga 300V.

 

Lampu Pijar yang dapat bekerja pada Arus DC maupun Arus AC ini banyak digunakan di Lampu Penerang Jalan, Lampu Rumah dan Kantor, Lampu Mobil, Lampu Flash dan juga Lampu Dekorasi.  Pada umumnya Lampu Pijar hanya dapat bertahan sekitar 1000 jam dan memerlukan Energi listrik yang lebih banyak dibandingkan dengan jenis-jenis lampu lainnya.

 

Lampu Lucutan Gas (Gas discharge Lamp)

 

Lampu lucutan gas menghasilkan cahaya dengan mengirimkan lucutan elektris melalui gas yang terionisasi, misalnya pada plasma. Sifat lucutan gas sangat tergantung pada frekuensi atau modulasi arus listriknya. Biasanya, lampu lampu ini menggunakan gas mulia (argon, neon, kripton, dan xenon) atau campuran dari gas-gas tersebut. Sebagian besar lampu-lampu ini juga mengandung bahan-bahan tambahan, seperti merkuri, natrium, dan/atau halida logam.

 

Lampu LED (Light Emitting Diode)

 

Lampu LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

4. Percobaan[Back]
 
a) Prosedur Percobaan

  • siapkan komponen yang dibutuhkan
  • letakkan semua komponen sesuai dengan gambar dibawah
  • Hubungkan semua komponen
  • setelah semua komponen dan tersusun dan terhubung,
  • play kan simulasinya
  • jika benar maka simulasi bisa dibuat applikasinya 
b) Rangkaian simulasi dan prinsip kerja
 
 
Keluaran Pada Oscilloscope :

 
prinsip kerja : 
Pada rangkaian dengan input ac, Sinyal input yang akan diperkuat adalah sinyal AC 6 volt, dengan frekuensi 1kHz. Besarnya gain penguatannya adalah tahanan input dibagi dengan tahanan penguatan yaitu -R2 / R1 = -500k/100k = -5. Untuk menentukan besarnya tegangan outputnya adalah gain x Vin = -5 x 6 volt = -30 volt. Tanda minus menunjukkan berkebalikan fasa dengan sinyal input. Artinya jika sinyal input adalah positif maka sinyal outputnya akan negatiif dan jika sinyal inputnya negatif maka sinyal outputnya adalah positif. Pada saat sinyal input pada posisi negatif maka sinyal outputnya pada posisi positif dan begitu sebaliknya jika sinyal inputnya berubah-ubah, kondisi inilah yang disebut dengan penguatan inverting (membalik).
 
5. Video[Back]
 
 

6. File Download[Back]

Rangkaian Aplikasi Inverting Amplifier Metal Detector  [unduh]

Rangkaian Inverting Amplifier  [unduh]

Video Rangkaian Inverting Ampiifier [unduh]

Datasheet Resistor [unduh]

Datasheet Inverting Amplifier [unduh]

Datasheet Amperemeter [unduh]

Datasheet Voltmeter [unduh]

Datasheet Op Amp [unduh]

Datasheet Oscilloscope [unduh]

Datasheet Diode [unduh]

Datasheet Buzzer [unduh]

   

Komentar

Postingan populer dari blog ini

Modul I : Potensiometer, Tahanan Geser, dan Jembatan Wheatstone

Modul III : HUKUM OHM, HUKUM KIRCHOFF, VOLTAGE & CURRENT DIVIDER, MESH, NODAL, THEVENIN

Tugas Pendahuluan modul I : Potensiometer, Tahanan Geser, Dan Jembatan Wheatstone